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1 Introduction

In the last decade, a plethora of graphical notations (such as BPMN and EPCs)
have been proposed to capture business processes. Independently from the spe-
cific notation at hand, formal verification has been generally considered as a
fundamental tool in the process design phase, supporting the modeler in build-
ing correct and trustworthy process models [11]. Intuitively, formal verification
amounts to check whether possible executions of the business process model
satisfy some desired properties, like generic correctness criteria (such as dead-
lock freedom or executability of activities) or domain-dependent constraints. To
enable formal verification and other forms of reasoning support, the business pro-
cess language gets translated into a corresponding formal representation, which
typically relies on variants of Petri nets [15], transition systems [1], or process
algebras [14]. Properties are then formalized using temporal logics, using model
checking techniques to actually carry out verification tasks [4].

A common drawback of classical process modeling approaches is being activity-
centric: they mainly focus on the control-flow perspective, lacking the connection
between the process and the data manipulated during its executions. This reflects
also in the corresponding verification techniques, which often abstract away from
the data component. This “data and process engineering divide” affects many
contemporary process-aware information systems, incrementing the amount of
redundancies and potential errors in the development phase [8]. To tackle this
problem, the artifact-centric paradigm has recently emerged as an approach in
which processes are guided by the evolution of business data objects, called ar-
tifacts [12,5]. A key aspect of artifacts is coupling the representation of data of
interest, called information model, with lifecycle constraints, which specify the
acceptable evolutions of the data maintained by the information model. On the
one hand, new modeling notations are being proposed to tackle artifact-centric



processes. A notable example is the Guard-State-Milestone (GSM) graphical no-
tation [6], which corresponds to way executive-level stakeholders conceptualize
their processes [3]. On the other hand, formal foundations of the artifact-centric
paradigm are being investigated in order to capture the relationship between
processes and data and support formal verification [7,2,9]. Two important issues
arise in this setting. First, verification formalisms must go beyond propositional
temporal logics, and incorporate first-order formulae to express constraints about
the evolution of data and to query the information model of artifacts. Second,
formal verification becomes much more difficult than for classical activity-centric
approaches, even undecidable in the general case.

In this technical report, we tackle the problem of automated verification of
GSM models. Our long-term goal is to provide support during the design of
a GSM process, assisting the modeler in checking whether the process satisfies
some desired properties. As an underlying formalism, we consider the framework
of Data-Centric Dynamic Systems (DCDSs) [9]. DCDSs are systems composed of
a data layer manipulated by a process layer, which can interact with external ser-
vices in order to inject new, fresh information into the data layer. These services
can represent internal components treated as a black box (such as the compo-
nent responsible to assign an identifier to a newly created artifact instance), or
truly external partners (such as the environment which a GSM model can in-
teract with). Several decidability results concerning the verification of DCDSs
have been recently established, considering the two settings in which services
behave deterministically and non-deterministically, and investigating different
fragments of first-order µ-calculus [13] as verification languages. More specifi-
cally, we study how to formalize GSM by relying on its incremental semantics,
one of the three equivalent GSM execution semantics introduced in [6]. The pos-
sibility of translating a GSM model into a corresponding DCDS is the basis for
applying the decidability results and verification techniques discussed in [9] for
the abstract DCDS approach, to the concrete case of GSM.

The main contribution of the present report is to provide technical details on
a formalization procedure for GSM using data-centric dynamic system (DCDS).

2 Overview of data-centric dynamic systems

Despite having a formally specified operational semantics for GSM models [6],
the verification of different properties of such models (e.g. existence of complete
execution, safety properties) is still an open problem. In order to solve this
problem, one should define a particular formalism that captures the intended
operational semantics of the business artifacts and provides mechanisms to solve
different verification tasks.

One of the most promising candidates for such a formalism is a data-centric
dynamic system (DCDS) together with its general verification framework pre-
sented in [10]. A DCDS is a pair S = 〈D,P〉, where D is a data layer and P is
a process layer over the former.



The data layer D models the relevant database schema together with its set
of integrity constraints, while the process layer P is a tuple P = 〈F ,A, %〉, where

– F is a finite set of functions representing interfaces to external services.
– A is a set of actions of the form α(p1, ..., pn) : {e1, ..., em}, where p1, ..., pn

are input parameters of an action and ei are effects of an action. Each effect
ei has the form q+i ∧Q−i  Ei, where

• q+i is a union of conjunctive queries (UCQ) over D that select the tuples
to instantiate the effect.

• Q−i is an arbitrary FO formula that filters away some tuples obtained
by q+i .

• Ei is the effect, i.e. a set of generated facts for D.

– % is a process which is a finite set of condition-action rules of the form
Q 7→ α, where α is an action and Q is a FO query over D.

The execution semantics of a DCDS S is defined by a possibly infinite-state
transition system ΥS , where states are instances of the database schema in D
and each transition corresponds to the application of an executable action in
P. In DCDSs the source of infinity relies in the service calls, which can inject
arbitrary fresh values into the system.

3 From GSM artifact model to DCDS

First of all, we need to represent the data layer of the GSM model R in a DCDS
system SR = 〈D,P〉.

3.1 Data layer

Given an artifact type (R, x,Attdata ∪Attstatus, T yp, Stg,Mst, Lcyc),
a lifecycle Lcyc = (Substages, Task,Owns,Guards,Ach, Inv)1,
a set of finite sets MSG of message types and SRV of (2-way) services,
a corresponding set of PAC-rules ΓPAC ;

the corresponding data layer D = 〈C,R, E , I′〉 will have the following form:

– C =
⋃

i

DOM(Typ(Atti)),

– R = {Ratt} ∪ {Rmi

chg|mi ∈Mst} ∪ {Rsjchg|sj ∈ Stg} ∪
∪ {Rmsgkdata |msgk ∈MSG and msgk is incoming 1-way message} ∪
∪ {Rsrvpdata|srvp ∈ SRV and srvp is a service call return} ∪
∪ {Rmsgqout |msgq ∈MSG and msgq is outgoing 1-way message} ∪
∪ {Rexec, Rblock},

where:

1 wlog, for the sake of simplicity we consider Substages = Inv = ∅



• Ratt = (idA, fr, a1, ..., an, s1, ..., sm,m1, ...,mk), where idA ranges along
the artifact IDs, n = |Attdata|,m = |Stg|, k = |Mst|. Stores the at-
tributes of an artifact. Each si and mi store the status of a stage and
milestone, respectively.

• Rmi

chg = (idoriginR , newstate) – stores the fact of a milestone mi has been

recently achieved or invalidated; idoriginR is the id of the artifact where
it happened and newstate stores the new value. This relation is used to
model the pool of internal events concerning milestones.

• R
sj
chg = (idoriginR , newstate) – same as previous but about stages being

opened or closed.
• Rmsgkdata = (iddestR , p1, ..., pl), where msgk is a 1-way incoming message

from the environment, (p1, ..., pl) – its signature and iddestR is the id of a
destination artifact (or null if message is indirected)2.
Used to model the immediate effect of an incoming message.The idea be-
hind it is that, together with propagating changes of involved attributes,
message is passed to the inner ’data-pool’ so that all the sentries which
use this message in the event expression, could react properly.

• R
srvp
data = (idcallerR ), p1, ..., pl, where srvp is an external service call return,

(p1, ..., pl) – its signature and iddestR is the id of a caller artifact (basicaly
the id of a destination artifact for service call return, but it can’t be
null). Same as for the incoming message.

• R
msgq
out = (iddestR , a1, ..., al) – stores eventual outgoing messages to be

sent to the environment after finishing the B-step.
• Rexec = (idR, x1, ..., xc), where xi are flags that keep information on

which PAC rules have been taken in consideration and c = |ΓPAC |.
• Rblock = (idR, blocked), keeps information whether an artifact instance

may receive an incoming message / service call return, or is currently
still processing the previous one.

• SHELF = (index, idR), implements a proposed methodology of keep-
ing the ACS data-bounded by restricting the number of artifact instances
within one snapshot (the number of instances along the execution path
may still be infinite).
Represents a physical storage for artifact instances, where one shelf may
contain only one artifact instance. When there is no artifact instance on
the shelf - the ID of stored instance is -1.

– E = {Ei|Ei is some integrity constraint}
– I0 = ∅.

3.2 Process layer

Given an artifact type (R, x,Attdata ∪Attstatus, T yp, Stg,Mst, Lcyc),
a lifecycle Lcyc = (Substages, Task,Owns,Guards,Ach, Inv),
a set of finite sets MSG of message types and SRV of (2-way) services,
a corresponding set of PAC-rules ΓPAC ;

the corresponding process layer P = 〈F ,A, %〉 will have the following form:

2 Q: Broadcast messages? A: They use queries to address specific artifacts.



Fig. 1. Incremental formulation of a B-step [6]

– F = {fgenID} ∪ {fsrvi |srvi ∈ SRV} ∪
∪{fmsgi |msgi ∈MSG and msgi is 1-way message from environment} ∪
∪ {fmsgiout |msgi ∈MSG and msgi is 1-way outgoing message}, where
• fgenID is a function with generates IDs for newly created artifact in-

stances.
• srvi(x) = (fsrvi(x, 1), ..., fsrvi(x, n)), where n is cardinality of service

output signature.
• msgi = (fmsgi(1), ..., fmsgi(n)), where n is cardinality of message sig-

nature.
– A = {αi} is a set of actions, where i =

−−−−−→
1, ..., NA and

NA = |ΓPAC |+ |MSGin|+ |SRV |+ 1 + 1 + 1, i.e. there is
– one action for every PAC-rule of the given GSM model
– one action for each incoming message (to describe immediate effect);
– one action for each service call (for immediate effect of the call return);
– one action to send outgoing messages after each B-step;
– one action to create an artifact instance;
– one action to remove the artifact;

– A process %, which is a set of condition-action rules is described below,
where for each action αi ∈ A there is one and only condition-action rule
defined.

B-step in DCDS When modeling a GSM model as a DCDS system, what we
would like to do is to mimic an incremental semantics of GSM, i.e. we encode each
micro-step of the B-step as a separate condition-action rule in DCDS system,
such that the effect on the data and process layer of the ACS of this action
coincides with the effect of corresponding micro-step in GSM.

Recall the structure of a B-step in GSM represented on Figure 1. According
to the incremental formulation of GSM, each B-step consists of an initial micro-



step which incorporates incoming event into current snapshot, a sequence of
micro-steps executing all applicable PAC-rules, and finally a micro-step sending
a set of generated events at the termination of the B-step. The translation relies
on the incremental semantics: given a GSM model G, we encode each possible
micro-step as a separate condition-action rule in the process of a corresponding
DCDS system S, such that the effect on the data and process layers of the ac-
tion coincides with the effect of the corresponding micro-step in GSM. However,
in order to guarantee that the transition system induced by a resulting DCDS
mimics the one of the GSM model, the translation procedure should also ensure
that all semantic assumption of GSM are modeled properly: (i) “one-message-
at-a-time” and “toggle-once” principles, (ii) the finiteness of micro-steps within
a B-step, and (iii) their order imposed by the model. We sustain these require-
ments by introducing into the data layer a set of auxiliary relations, suitably
recalling them in the CA-rules to reconstruct the desired behaviour.

Thus, when performing the translation we rely on the following assumptions:

1. Restricting S to process only one incoming message at a time is implemented
by the introduction of a blocking mechanism, represented by an auxiliary
relation Rblock(idR, blocked) for each artifact in the system, where idR is
the artifact instance identifier, and blocked is a boolean flag. This flag is
set to true upon receiving an incoming message, and is then reset to false
at the termination of the corresponding B-step, once the outgoing events
accumulated in the B-step are sent the environment. If an artifact instance
has blocked = true, no further incoming event will be processed. This is
enforced by checking the flag in the condition of each CA-rule associated to
the artifact.

2. In order to ensure “toggle once” principle and guarantee the finiteness of
sequence of micro-steps triggered by an incoming event, we introduce an
eligibility tracking mechanism. This mechanism is represented by an auxil-
iary relation Rexec(idR, x1, ..., xc), where c is the total number of PAC-rules,
and each xi corresponds to a certain PAC-rule of the GSM model. Each xi
encodes whether the corresponding PAC rule is eligible to fire at a given
moment in time (i.e., a particular micro-step). The initial setup of the eligi-
bility tracking flags is performed at the beginning of a B-step, based on the
evaluation of the prerequisite condition of each PAC rule. More specifically,
when xi = 0, the corresponding CA-rule is eligible to apply and has not yet
been considered for application. When instead xi = 1, then either the rule
has been fired, or its prerequisite turned out to be false.

3. The same flag-based approach is used to propagate in a compact way infor-
mation related to the PAC rules that have been already processed, following
a mechanism that resembles dead path elimination in BPEL. In fact, Rexec
is also used to enforce a firing order of CA-rules that follows the one induced
by G. This is achieved as follows. For each CA-rule Q 7→ α corresponding
to a given PAC rule r, condition Q is put in conjunction with a further for-
mula, used to check whether all the PAC rules that precede r according to



the ordering imposed by G have been already processed. Only in this case
r can be considered for application, consequently applying its effect α to
the current artifact snapshot. More specifically, the corresponding CA-rule
becomes Q ∧ exec(r) 7→ α, where exec(r) =

∧
i xi such that i ranges over

the indexes of those rules that precede r. Once all xi flags are switched to
1, the B-step is about to finish: a dedicated CA-rule is enabled to send the
outgoing events to the environment, and the artifact instance blocked flag is
released.

So, here is the general algorithm of translation:

1. For each incoming message mi, construct a CA-rule, which:

– Implements immediate effect of an incoming message

– Puts a block on the artifact instance to perform the B-step.

– Sets up the eligibility flags based on the current snapshot, i.e. for each
PAC-rule check the prerequisite part. If π = false, then set the boolean
flag of the corresponding micro-step 1 (which will basically mean that
we have already considered this rule).

2. For each PAC-rule ri construct a CA-rule such that:

– It contains a check whether the action has been already executed or has
been marked as irrelevant (simply checks the boolean flag).

– It contains a check whether all the PAC rules that precede ri according
to the ordering imposed by G have been already processed.

– If relevant and eligible and if the antecedent part is true (the query to
populate the effect is not empty), performs the required change of the
status attribute

– If relevant and eligible, marks the corresponding boolean flag as true.

3. Construct a CA-rule, which will send outgoing messages and unblock the
artifact instance:

– Check whether all the PAC-rules have been taken into consideration
(∀xk ∈ Rblock : xk = 1) and whether the artifact instance is still blocked.

– In the action part – release the block.

– In the action part – flush the eligibility flags.

4. If create artifact or remove artifact tasks are present, add micro-steps dealing
with it (a particular type of the immediate effect micro-steps described later).

Now let us get down to translating each of the possible micro-steps.

Translation 1 (Immediate effect of 1-way incoming message).
Assume an incoming message type M , its associated artifact type R and its
signature (a1 : Typ(a1), ...ak : Typ(ak)), where ai ∈ Attdata.
Assume also a set of PAC-rules {(πi, αi, γi)}.
Then an immediate effect of a message of type M on some artifact instance A



of type R may be modeled by the following condition-action rule:

∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→
αImmEffM (idR) : {
(1) Ratt(idR, a, s,m) Ratt(idR, a, s,m)[a1/f

M (1), ..., ak/f
M (k)]

(2) Ratt(idR, a, s,m) RMdata(idR, f
M (1), ..., fM (k))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(4) for each i :

RMexec(idR, x1, ..., xq) ∧ πi(idR) RMexec(idR, x1, ..., xq)[xi/0]

RMexec(idR, x1, ..., xq) ∧ ¬πi(idR) RMexec(idR, x1, ..., xq)[xi/1]

(5) [CopyRest]

}, where

(1) substitutes attributes’ values with the payload of the message; (2) propagates
values to the message hub; (3) blocks the artifact instance; (4) initializes the
eligibility flags for each PAC-rule, where πi(idR) is a prerequisite of the i-th
PAC-rule.

Translation 2 (Immediate effect of 2-way service call generated by ar-
tifact instance).
Assume a 2-way service call type F within an atomic stage Sp, its associated ar-
tifact type R, input signature (b1 : Typ(b1), ...bl : Typ(bl)) and output signature
(a′1 : Typ(a′1), ...a′k : Typ(a′k)) where a′i ∈ Attdata.
Assume also a set of PAC-rules {(πi, αi, γi)}.
Then a service call and an immediate effect of a service call return of type F on
some artifact instance A of type R may be modeled by the following condition-
action rule:

∃a, s,m Ratt(idR, a, s,m) ∧ Sp = true ∧Rblock(idR, false) 7→
αcallF (idR) :

{(1) Ratt(idR, a, s,m) Ratt(idR, a, s,m)[a1/f
F (b, 1), ..., ak/f

F (b, k)]

(2) Ratt(idR, a, s,m) RFdata(idR, f
F (b, 1), ..., fF (b, k))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(4) for each i :

RFexec(idR, x1, ..., xq) ∧ πi(idR) RFexec(idR, x1, ..., xq)[xi/0]

RFexec(idR, x1, ..., xq) ∧ ¬πi(idR) RFexec(idR, x1, ..., xq)[xi/1]

(5) [CopyRest]

}, where

(1) substitutes attributes’ values with the result of the service call; (2) propagates
values to the message hub; (3) blocks the artifact instance; (4) initializes the



eligibility flags for each PAC-rule, where πi(idR) is a prerequisite of the i-th
PAC-rule.

Translation 3 (PAC-1 rule (Activating a stage)).
Assume a stage Sj and its activating guard gj = [ on ξ(x) if φ(x)], where ξ(x)
is a triggering event and φ(x) is a condition. Then activating a stage Sj by
validating gj can be modeled by the following condition-action rule:
NB: Include term (S′ = true) if S′ is parent of Sj .
NB: Note that prerequisite is checked on the stage of implementing immediate
effect and, if not validated, will lead to marking xk as 1, so will lead to skipping
this CA-rule.
NB: Include effect propagating the outgoing message to the outgoing hub, if
the stage to be activated is atomic and contains an action of sending a one-way
message O with a signature (b1 : Typ(b1), ...bk : Typ(bk)), where bi ∈ Attdata. .

Rexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→
αkexec(idR, a

′, x) : {
(1) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) Ratt(idR, a, s,m)[Sj/true]

(2) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) R
Sj

chg(idR, true)

(3) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) ROout(idR, b1, ..., bk)

(4) Rexec(idR, x) ∧ xk = 0 Rexec(idR, x)[xk/1]

(5) [CopyMessagePools]

(6) [CopyRest] },
where exec(k) =

∧

k

xk such that rk <PDG ra

Rξ(idR, a′) = RM (idR, a′) if the guard contains incoming message event

or Rattchg(idR, statusnew)) if the guard contains internal event.

(1) activates a stage on a condition; (2) propagates internal event of opening
a stage on a condition; (3) prepares eventual outgoing message for sending; (4)
flags the microstep as performed.

Translation 4 (PAC-2 rule (Milestone achiever)).
Assume a stage Sj and its milestone mj with achieving sentry [ on ξ(x) if φ(x)],
where ξ(x) is a triggering event and φ(x) is a condition. Then achieving a mile-



stone mj can be modeled by the following condition-action rule:

RMexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→
αkexec(idR, a

′, x) : {
(1) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) Ratt(idR, a, s,m)[mj/true]

(2) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) R
mj

chg(idR, true)

(3) Rexec(idR, x) ∧ xk = 0 Rexec(idR, x)[xk/1]

(4) [CopyMessagePools]

(5) [CopyRest] },
where exec(k) =

∧

k

xk such that rk <PDG ra

Rξ(idR, a′) = RM (idR, a′) if the guard contains incoming message event

or Rattchg(idR, statusnew)) if the guard contains internal event.

(1) achieves a milestone on a condition; (2) propagates internal event of achieving
a milestone on a condition; (3) flags the microstep as performed;

Translation 5 (PAC-3 rule (Milestone invalidator)).
Assume a stage Sj and its milestonemj with invalidating sentry [ on ξ(x) if φ(x)],
where ξ(x) is a triggering event and φ(x) is a condition. Then invalidating a mile-
stone mj can be modeled by the following condition-action rule:

RMexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→
αkexec(idR, a

′, x) : {
(1) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) Ratt(idR, a, s,m)[mj/false]

(2) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) R
mj

chg(idR, false)

(3) Rexec(idR, x) ∧ xk = 0 Rexec(idR, x)[xk/1]

(4) [CopyMessagePools]

(5) [CopyRest] },
where exec(k) =

∧

k

xk such that rk <PDG ra

Rξ(idR, a′) = RM (idR, a′) if the guard contains incoming message event

or Rattchg(idR, statusnew)) if the guard contains internal event.

(1) invalidates a milestone on a condition; (2) propagates internal event of in-
validating a milestone on a condition; (3) flags the microstep as performed;

Translation 6 (PAC-4 rule (Opening stage invalidating milestone)).
Assume a stage Sj and its milestonemj . Then invalidating a milestonemj caused



by opening a stage can be modeled by the following condition-action rule:

Rexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→
αkexec(idR, a

′, x) : {
(1) Ratt(idR, a, s,m) ∧RSj

chg(idR, true)) Ratt(idR, a, s,m)[mj/false]

(2) Ratt(idR, a, s,m) ∧RSj

chg(idR, true)) R
mj

chg(idR, false)

(3) RMexec(idR, x) ∧ xk = 0 RMexec(idR, x)[xk/1]

(4) [CopyMessagePools]

(5) [CopyRest] },
where exec(k) =

∧

k

xk such that rk <PDG ra

(1) invalidates a milestone if the stage was open; (2) propagates internal event
of invalidating a milestone; (4) flags the microstep as performed;

Translation 7 (PAC-5 rule (Closing a stage on achieving milestone)).
Assume a stage Sj and its milestone mj . Then closing a stage Sj caused by
achieving a milestone mj can be modeled by the following condition-action rule:

RMexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→
αkexec(idR, a, x) : {
(1) Ratt(idR, a, s,m) ∧Rmj

chg(idR, true)) Ratt(idR, a, s,m)[Sj/false]

(2) Ratt(idR, a, s,m) ∧Rmj

chg(idR, true)) R
Sj

chg(idR, false)

(3) RMexec(idR, x) ∧ xk = 0 RMexec(idR, x)[xk/1]

(4) [CopyMessagePools]

(5) [CopyRest] },
where exec(k) =

∧

k

xk such that rk <PDG ra

(1) closes a stage if the milestone was achieved; (2) propagates internal event of
closing a stage; (4) flags the microstep as performed;

Translation 8 (PAC-6 rule (No activity in a closed stage)).
Assume a stage Sj and its parent stage S′. Then closing a stage Sj caused by



closing its parent stage S′ can be modeled by the following condition-action rule:

RMexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→
αkexec(idR, a

′, x) : {
(1) Ratt(idR, a, s,m) ∧RS′

chg(idR, false)) Ratt(idR, a, s,m)[Sj/false]

(2) Ratt(idR, a, s,m) ∧RSj

chg(idR, false)) R
Sj

chg(idR, false)

(3) RMexec(idR, x) ∧ xk = 0 RMexec(idR, x)[xk/1]

(4) [CopyMessagePools]

(5) [CopyRest] },
where exec(k) =

∧

k

xk such that rk <PDG ra

(1) closes a stage if the parent stage is closed; (2) propagates internal event of
closing a stage; (3) flags the microstep as performed;

Translation 9 (Sending outgoing messages to the environment and
flushing the message hubs).
Assume a set of 1-way outgoing message types Oj obtained after all the PAC
rules have been already taken into consideration. Then the conclusive part of
a B-step, involving sending one-way outgoing messages and flushing the system
message hubs may be modeled by the following CA-rule:

∃Rexec(idR, x) ∧ ∀i xi = 1 ∧Rblock(idR, true) 7→
αsendflush(idR) : {
(1) Rexec(idR, x) ∧ ∀i xi = 1 Rblock(idR, false)

(2) Rexec(idR, x) ∧ ∀i xi = 1 Rexec(idR, 0)

(3) Ratt(idR, a, s,m) Ratt(idR, a, s,m)

(4) for each j :

R
Oj

out(idR, b1, ..., bk) Rresult(idR, f
Oj (b1, ..., bk))

(5) [CopyRest]

(1) unblocks the artifact instance; (2) flushes the eligibility flags; (3) copies data;
(4) sends outgoing messages to the environment.

Translation 10 (Create artifact service call).
Assume a particular kind of a 2-way service call - create artifact service call,
within an atomic stage Sp. Assume also a set of PAC-rules {(πi, αi, γi)}.
Then a create artifact service call and its immediate effect of a service call return



may be modeled by the following condition-action rule:

∃a, s,m Ratt(idR, a, s,m) ∧ Sp = true ∧Rblock(idR, false)

7→ αcreateA (idR, num) :

{(1) Ratt(idR, a, s,m) Ratt(f
create
A (ã), ã, 0, 0)

(3) Ratt(idR, a, s,m) Rsrv−newAdata (f createA (ã))

(4) Ratt(idR, a, s,m) Rblock(idR, true)

(5) for each i :

RFexec(idR, x1, ..., xq) ∧ πi(idR) RFexec(idR, x1, ..., xq)[xi/0]

RFexec(idR, x1, ..., xq) ∧ ¬πi(idR) RFexec(idR, x1, ..., xq)[xi/1]

(6) [CopyRest]

}, where f createA (ã) returns ID of newly create artifact.

Translation 11 (Remove artifact service call).
Assume a particular kind of a 2-way service call - remove artifact service call,
within an atomic stage Sp. Assume also a set of PAC-rules {(πi, αi, γi)}.
Then a remove artifact service call and its immediate effect of a service call
return may be modeled by the following condition-action rule:

∃a, s,m Ratt(idR, a, s,m) ∧ Sp = true ∧Rblock(idR, false)

7→ αremoveA (idR, num) :

(2) Ratt(idR, a, s,m) Rsrv−remAdata (fremoveA (a))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(5) for each i :

RFexec(idR, x1, ..., xq) ∧ πi(idR) RFexec(idR, x1, ..., xq)[xi/0]

RFexec(idR, x1, ..., xq) ∧ ¬πi(idR) RFexec(idR, x1, ..., xq)[xi/1]

(6) [CopyRest]

}, where fremoveA (a) returns the outcome of deletion.

4 Trivial example

Let’s consider a process Func which is as simple as calculating a sum a+ b, given
that a 6= b. The GSM concrete model of such process is, in fact, represented by
the first stage on the Figure 2.

Then the corresponding artifact type has the following form:

(R, x,Attdata ∪Attstatus, T yp, Stg,Mst, Lcyc), where

Attdata = {AID, a, b, c}3
Attstatus = {s1,m1,m2}4, all Boolean

Type = {(a, F loat), (b, F loat), (c, F loat)}
S = {s1}, M = {m1,m2}



Fig. 2. GSM model of (a+ b)

Consequently, lifecycle Lcyc has the following form:

(Substages, Task,Owns,Guards,Ach, Inv), where

Substages = ∅
Task = {(s1, Sum)}
Owns = {(s1, {m1,m2})}

Guards = {(s1, {g̃1})}
Ach = {(m1, {m̃1}), (m2, {m̃2})}
Inv = ∅

Corresponding sentries for guards and milestones are given below:

g̃1 : on x.Funccall(a, b) if a 6= b

m̃1 : on x.Sumreturn(c) if c ≥ 0

m̃2 : if c < 0

Intuitively, the workflow of the given process is the following:

– after receiving a request from the environment, if the operands are not
equal, the first stage is activated.

– the task associated with the first atomic stage is executed, calling the ex-
ternal service Sum with given parameters and obtaining the result;

– upon completing the request, if the result is positive, then milestone m1 is
achieved.

– if attribute storing the result of operation is negative, then milestone m2

is achieved. Note that the corresponding sentry m̃2 doesn’t contain event
expression of receiving service call return. Thus, if the stage gets activated
with c < 0, this milestone will be achieved immediately.

1 For the sake of simplicity, we will omit such attributes as mostRecEventType and
mostRecEventT ime

2 Similarly, we will omit attributes like mmostRecentUpdate and activemostRecentUpdate
S



PAC rules

Type ID Prerequisite Antecedent Consequent
PAC-1 x1 ¬x.s1 on x.Funccall(a, b) if a 6= b +x.s1

PAC-2 x2 x.s1 on x.Sumreturn(c) if c ≥ 0 +x.m1

PAC-2 x3 x.s1 if c < 0 +x.m2

PAC-4 x4 x.m1 on + x.s1 −x.m1

PAC-4 x5 x.m2 on + x.s1 −x.m2

PAC-5 x6 x.s1 on + x.m1 −x.s1
PAC-5 x7 x.s1 on + x.m2 −x.s1

DCDS Translation

Data layer
The corresponding data layer D = 〈C,R, E , I0〉 will have the following form:

– C =
⋃

i

DOM(Typ(Atti)),

– R = {Ratt} ∪ {Rmi

chg|mi ∈Mst} ∪ {RSj

chg|Sj ∈ Stg} ∪
∪ {Rmsgkdata |msgk ∈MSG and msgk is incoming 1-way message} ∪
∪ {Rsrvpdata|srvp ∈ SRV and srvp is a service call return} ∪
∪ {Rmsgqout |msgq ∈MSG and msgq is outgoing 1-way message} ∪
∪ {Rexec, Rblock},

where Ratt stores the attributes of an artifact, Rexec keeps information on
which PAC rules have been taken in consideration while other relations are
used to model the incoming / outgoing message pool:

• Ratt = (idA, a, b, c, s1,m1,m2).

• Rexec = (idA, x1, x2, x3, x4, x5, x6, x7).

• Rblock = (idA, blocked).

• Rs1chg = (idA, newstate).

• Rm1

chg = (idA, newstate).

• Rm2

chg = (idA, newstate).

• RFuncdata = (idA, a, b).

• RSumdata = (idA, c).

– E = ∅.
– I0 = ∅.



Immediate effect rules
Incoming message Func:

∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→
αImmEffFunc (idR) : {
(1) Ratt(idR, a, s,m) Ratt(idR, a, s,m)[a/fFunc(1), b/fFunc(2)]

(2) Ratt(idR, a, s,m) RFuncdata (idR, f
Func(1), fFunc(2))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(4)

Rexec(idR, x) ∧ ¬S1  Rexec(idR, x)[x1/0, x2/1, x3/1, x6/1, x7/1]

Rexec(idR, x) ∧ S1  Rexec(idR, x)[x1/1, x2/0, x3/0, x6/0, x7/0]

Rexec(idR, x) ∧m1  Rexec(idR, x)[x4/0]

Rexec(idR, x) ∧ ¬m1  Rexec(idR, x)[x4/1]

Rexec(idR, x) ∧m2  Rexec(idR, x)[x5/0]

Rexec(idR, x) ∧ ¬m2  Rexec(idR, x)[x5/1]

(5) [CopyRest]

}

Service call return Sum:

∃a, s,m Ratt(idR, a, s,m) ∧ S1 = true ∧Rblock(idR, false) 7→
αcallSum(idR) : {
(1) Ratt(idR, a, s,m) Ratt(idR, a, s,m)[c/fSum(a, b, 1)]

(2) Ratt(idR, a, s,m) RSumdata (idR, f
Sum(a, b, 1))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(4)

Rexec(idR, x) ∧ ¬S1  Rexec(idR, x)[x1/0, x2/1, x3/1, x6/1, x7/1]

Rexec(idR, x) ∧ S1  Rexec(idR, x)[x1/1, x2/0, x3/0, x6/0, x7/0]

Rexec(idR, x) ∧m1  Rexec(idR, x)[x4/0]

Rexec(idR, x) ∧ ¬m1  Rexec(idR, x)[x4/1]

Rexec(idR, x) ∧m2  Rexec(idR, x)[x5/0]

Rexec(idR, x) ∧ ¬m2  Rexec(idR, x)[x5/1]

(5) [CopyRest]

}



PAC rules
PAC-1 rule x1:

Rexec(idR, x) ∧ x1 = 0 ∧Rblock(idR, true) 7→
α1
exec(idR, a, b, x) : {

(1) RFuncdata (idR, a, b) ∧Ratt(idR, a, s,m) ∧ a 6= b Ratt(idR, a, s,m)[S1/true]

(2) RFuncdata (idR, a, b) ∧Ratt(idR, a, s,m) ∧ a 6= b RS1

chg(idR, true)

(3) RMexec(idR, x) ∧ x1 = 0 RMexec(idR, x)[x1/1]

(4) [CopyMessagePools]

(5) [CopyRest] }
PAC-2 rule x2:

Rexec(idR, x) ∧ x2 = 0 ∧Rblock(idR, true) 7→
α2
exec(idR, c, x) : {

(1) RSumdata (idR, c) ∧Ratt(idR, a, s,m) ∧ c ≥ 0 Ratt(idR, a, s,m)[m1/true]

(2) RSumdata (idR, c) ∧Ratt(idR, a, s,m) ∧ c ≥ 0 Rm1

chg(idR, true)

(3) Rexec(idR, x) ∧ x2 = 0 Rexec(idR, x)[x2/1]

(4) [CopyMessagePools]

(5) [CopyRest] }
PAC-2 rule x3:

Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x3 = 0 ∧Rblock(idR, true) 7→
α3
exec(idR, a, x) : {

(1) Ratt(idR, a, s,m) ∧ c < 0 Ratt(idR, a, s,m)[m2/true]

(2) Ratt(idR, a, s,m) ∧ c < 0 Rm2

chg(idR, true)

(3) Rexec(idR, x) ∧ x3 = 0 Rexec(idR, x)[x3/1]

(4) [CopyMessagePools]

(5) [CopyRest] }
PAC-4 rule x4:

Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x4 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→
α4
exec(idR, a, x) : {

(1) Ratt(idR, a, s,m) ∧RS1

chg(idR, true)) Ratt(idR, a, s,m)[m1/false]

(2) Ratt(idR, a, s,m) ∧RS1

chg(idR, true)) Rm1

chg(idR, false)

(3) Rexec(idR, x) ∧ x4 = 0 Rexec(idR, x)[x4/1]

(4) [CopyMessagePools]

(5) [CopyRest] }



PAC-4 rule x5:

Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x5 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→
α5
exec(idR, a, x) : {

(1) Ratt(idR, a, s,m) ∧RS1

chg(idR, true)) Ratt(idR, a, s,m)[m2/false]

(2) Ratt(idR, a, s,m) ∧RS1

chg(idR, true)) Rm2

chg(idR, false)

(3) Rexec(idR, x) ∧ x5 = 0 Rexec(idR, x)[x5/1]

(4) [CopyMessagePools]

(5) [CopyRest] }
PAC-5 rule x6:

Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x6 = 0 ∧ x2 = 1 ∧Rblock(idR, true) 7→
α6
exec(idR, a, x) : {

(1) Ratt(idR, a, s,m) ∧Rm1

chg(idR, true)) Ratt(idR, a, s,m)[S1/false]

(2) Ratt(idR, a, s,m) ∧Rm1

chg(idR, true)) RS1

chg(idR, false)

(3) Rexec(idR, x) ∧ x6 = 0 Rexec(idR, x)[x6/1]

(4) [CopyMessagePools]

(5) [CopyRest] }
PAC-5 rule x7:

Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x7 = 0 ∧ x3 = 1 ∧Rblock(idR, true) 7→
α7
exec(idR, a, x) : {

(1) Ratt(idR, a, s,m) ∧Rm2

chg(idR, true)) Ratt(idR, a, s,m)[S1/false]

(2) Ratt(idR, a, s,m) ∧Rm2

chg(idR, true)) RS1

chg(idR, false)

(3) Rexec(idR, x) ∧ x7 = 0 Rexec(idR, x)[x7/1]

(4) [CopyMessagePools]

(5) [CopyRest] }
Sending outgoing messages and unblocking the artifact instance

∃Rexec(idR, x) ∧ ∀i xi = 1 ∧Rblock(idR, true) 7→
αsendflush(idR) : {
(1) Rexec(idR, x) ∧ ∀i xi = 1 Rblock(idR, false)

(2) Rexec(idR, x) ∧ ∀i xi = 1 Rexec(idR, 0)

(3) Ratt(idR, a, s,m) Ratt(idR, a, s,m)

(4) for each j :

R
Oj

out(idR, b1, ..., bk) Rresult(idR, f
Oj (b1, ..., bk))

(5) [CopyRest]



4.1 Constructing a transition system (TS) from DCDS encoding

Let us now try to simulate the construction of a transition system resulting from
the obtained translation. We start with an initial state I0 such that:

– s1 = m1 = m2 = 0
– Rblock(idR, false)
– Rexec(idR, 0)
– RSumdata = RFuncdata = ∅

Let us evaluate the condition part of all CA-rules and mark with (∗) appli-
cable ones:

(∗) ∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→ {}
∃a, s,m Ratt(idR, a, s,m) ∧ S1 = true ∧Rblock(idR, false) 7→ {}
Rexec(idR, x) ∧ x1 = 0 ∧Rblock(idR, true) 7→ {}
Rexec(idR, x) ∧ x2 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x3 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x4 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x5 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x6 = 0 ∧ x2 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x7 = 0 ∧ x3 = 1 ∧Rblock(idR, true) 7→ {}
∃Rexec(idR, x) ∧ ∀i xi = 1 ∧Rblock(idR, true) 7→ {}

So, only the first rule is applicable, let us check what’s inside it:

∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→
αImmEffFunc (idR) : {
(1) Ratt(idR, a, s,m) Ratt(idR, a, s,m)[a/fFunc(1), b/fFunc(2)]

(2) Ratt(idR, a, s,m) RFuncdata (idR, f
Func(1), fFunc(2))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(4)

Rexec(idR, x) ∧ ¬S1  Rexec(idR, x)[x1/0, x2/1, x3/1, x6/1, x7/1]

Rexec(idR, x) ∧ S1  Rexec(idR, x)[x1/1, x2/0, x3/0, x6/0, x7/0]

Rexec(idR, x) ∧m1  Rexec(idR, x)[x4/0]

Rexec(idR, x) ∧ ¬m1  Rexec(idR, x)[x4/1]

Rexec(idR, x) ∧m2  Rexec(idR, x)[x5/0]

Rexec(idR, x) ∧ ¬m2  Rexec(idR, x)[x5/1]

(5) [CopyRest]

}



First effect is to obtain input from the environment by calling the function fFunc.
Second effect propagates obtained data to the inner message pool. (3) Blocks the
artifact instance. Effects from (4) decide which CA-rules are relevant. For our
current state, we get that: x1 = 0 and all the rest xi = 1. Which means that
only x1 is relevant.

Thus, we get the following situation:

– s1 = m1 = m2 = 0
– Rblock(idR, true)
– Rexec(idR, (0, 1, ..., 1))
– RSumdata = ∅, RFuncdata = (a, b)

Let us evaluate again the condition part of all CA-rules and mark with (∗)
applicable ones:

∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→ {}
∃a, s,m Ratt(idR, a, s,m) ∧ S1 = true ∧Rblock(idR, false) 7→ {}

(∗) Rexec(idR, x) ∧ x1 = 0 ∧Rblock(idR, true) 7→ {}
Rexec(idR, x) ∧ x2 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x3 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x4 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x5 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x6 = 0 ∧ x2 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x7 = 0 ∧ x3 = 1 ∧Rblock(idR, true) 7→ {}
∃Rexec(idR, x) ∧ ∀i xi = 1 ∧Rblock(idR, true) 7→ {}

So, only the third rule is applicable, let us check what’s inside it:

Rexec(idR, x) ∧ x1 = 0 ∧Rblock(idR, true) 7→
α1
exec(idR, a, b, x) : {

(1) RFuncdata (idR, a, b) ∧Ratt(idR, a, s,m) ∧ a 6= b Ratt(idR, a, s,m)[S1/true]

(2) RFuncdata (idR, a, b) ∧Ratt(idR, a, s,m) ∧ a 6= b RS1

chg(idR, true)

(3) RMexec(idR, x) ∧ x1 = 0 RMexec(idR, x)[x1/1]

(4) [CopyMessagePools]

(5) [CopyRest] }

At this point there are 2 possible cases – when a 6= b and a = b. If a = b the
first 2 effects are ignored and we just mark x1 = 1 and that’s it. Then we go to
the last rule which unblocks the artifact instance.
If a 6= b, then we open a stage s1 and propagate this event to the inner message
pool. We also mark x1 = 1. So, we have the following situation:

– s1 = 1,m1 = m2 = 0



– Rblock(idR, true)

– Rexec(idR, (1, 1, ..., 1))

– RSumdata = ∅, RFuncdata = (a, b)

Let us evaluate again the rules:

∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→ {}
∃a, s,m Ratt(idR, a, s,m) ∧ S1 = true ∧Rblock(idR, false) 7→ {}
Rexec(idR, x) ∧ x1 = 0 ∧Rblock(idR, true) 7→ {}
Rexec(idR, x) ∧ x2 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x3 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x4 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x5 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x6 = 0 ∧ x2 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x7 = 0 ∧ x3 = 1 ∧Rblock(idR, true) 7→ {}

(∗) ∃Rexec(idR, x) ∧ ∀i xi = 1 ∧Rblock(idR, true) 7→ {}

The last rule is applicable:

∃Rexec(idR, x) ∧ ∀i xi = 1 ∧Rblock(idR, true) 7→
αsendflush(idR) : {
(1) Rexec(idR, x) ∧ ∀i xi = 1 Rblock(idR, false)

(2) Rexec(idR, x) ∧ ∀i xi = 1 Rexec(idR, 0)

(3) Ratt(idR, a, s,m) Ratt(idR, a, s,m)

(4) for each j :

R
Oj

out(idR, b1, ..., bk) Rresult(idR, f
Oj (b1, ..., bk))

(5) [CopyRest]

So we have:

– s1 = 1,m1 = m2 = 0

– Rblock(idR, false)

– Rexec(idR, (0, 0, ..., 0))

– RSumdata = ∅, RFuncdata = ∅



Let us evaluate again the rules:

(∗) ∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→ {}
(∗) ∃a, s,m Ratt(idR, a, s,m) ∧ S1 = true ∧Rblock(idR, false) 7→ {}

Rexec(idR, x) ∧ x1 = 0 ∧Rblock(idR, true) 7→ {}
Rexec(idR, x) ∧ x2 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x3 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x4 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x5 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x6 = 0 ∧ x2 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x7 = 0 ∧ x3 = 1 ∧Rblock(idR, true) 7→ {}
∃Rexec(idR, x) ∧ ∀i xi = 1 ∧Rblock(idR, true) 7→ {}

Here comes indeterministic choice of the rule to apply. Let us, say, apply the
first one:

∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→
αImmEffFunc (idR) : {
(1) Ratt(idR, a, s,m) Ratt(idR, a, s,m)[a/fFunc(1), b/fFunc(2)]

(2) Ratt(idR, a, s,m) RFuncdata (idR, f
Func(1), fFunc(2))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(4)

Rexec(idR, x) ∧ ¬S1  Rexec(idR, x)[x1/0, x2/1, x3/1, x6/1, x7/1]

Rexec(idR, x) ∧ S1  Rexec(idR, x)[x1/1, x2/0, x3/0, x6/0, x7/0]

Rexec(idR, x) ∧m1  Rexec(idR, x)[x4/0]

Rexec(idR, x) ∧ ¬m1  Rexec(idR, x)[x4/1]

Rexec(idR, x) ∧m2  Rexec(idR, x)[x5/0]

Rexec(idR, x) ∧ ¬m2  Rexec(idR, x)[x5/1]

(5) [CopyRest]

}

Then what we get is:

– s1 = 1,m1 = m2 = 0
– Rblock(idR, true)
– Rexec(idR, (1, 0, 0, 1, 1, 0, 0))
– RSumdata = ∅, RFuncdata = (a, b)

So we have to apply x2, x3, x6, x7.



5 Some important proofs: soundness and completeness

The proof plan:

1. Prove that for each micro-step of the GSM model, the corresponding DCDS
CA-rule results in the same state (pre-snapshot) of the model, w.r.t. data
and status attributes.

2. Prove that for each GSM B-step (certain path in the resulting transition sys-
tem) there exists a corresponding execution in the DCDS transition system.

3. Prove that for each execution path in the DCDS transition system, there
exists a corresponding one in GSM.

Lemma 1. For each micro-step, consisting of applying a ground PAC rule (πk, αk, γk)
to a pre-snapshot Σj, the corresponding translation of this rule – a DCDS
condition-action rule Qk 7→ αk(p1, ..., pq) : {e1, ..., em}, results in the same pre-
snapshot Σj+1 w.r.t. data and status attributes.

Proof. First, we have to prove that the CA-rule, corresponding to computing the
Σ1 = ImmEffect(Σ, e, t), results in the same pre-snapshot as ImmEffect(Σ, e, t).
By definition of the immediate effect of an incoming event e = M(A1 : c1, ..., An :
cn), ImmEffect(Σ, e, t) is a pre-snapshot Σ′ obtained from Σ by modifying the
corresponding artifact instance I in the following way 5: for each data attribyte
Ai, set I.Ai := ci.

Let us now consider the corresponding CA-rule:

∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→
αImmEffM (idR) : {
(1) Ratt(idR, a, s,m) Ratt(idR, a, s,m)[a1/f

M (1), ..., ak/f
M (k)]

(2) Ratt(idR, a, s,m) RMdata(idR, f
M (1), ..., fM (k))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(4) for each i :

RMexec(idR, x1, ..., xq) ∧ πi(idR) RMexec(idR, x1, ..., xq)[xi/0]

RMexec(idR, x1, ..., xq) ∧ ¬πi(idR) RMexec(idR, x1, ..., xq)[xi/1]

(5) [CopyRest]

}, where

The condition part of this CA-rule selects an artifact instance and checks
whether it is able to process the message, i.e. is not busy with processing an-
other one. Then, the first effect of the action (1) does exactly what is required
by the definition of ImmEffect – changes the data attributes affected by the
payload of e. The second effect (2) propagates the values of the incoming event
to the system message hub, which is used by the DCDS engine to encode the
execution of a model. Thus, we can abstract from it, as well from the third effect

5 As mentioned earlier, we omit mostRecEventType and mostRecEventT ime



(3), which blocks the artifact instance from receiving other messages until the
current message is fully processed. Also the forth effect (4) may be abstracted
away, since it is also a system information.
It should be noted, though, that the fourth effect (4) implements the step of se-
lecting applicable CA-rules according to the incremental semantics of GSM. For
those CA-rules whose prerequisite is valid (πi(idR) == true), the corresponding
CA-rule is marked as 0, i.e. to be taken into consideration. Not eligible rules are
marked with 1, i.e. already taken into consideration. Therefore, since:

– it is assumed that in GSM incoming messages ”are processed by the artifact
instances one at a time”;

– corresponding CA-rule uses its own blocking mechanism to ensure this;

– the only effect changing data attributed is the first one (1), which is applied
whenever an action is fire (i.e. without any condition);

– the first effect strictly corresponds to the definition of the ImmEffect in
GSM;

– no other effect involves neither data nor status attributes,

then it may be claimed that the DCDS pre-snapshot obtained after firing the cor-
responding CA-rule coincides with the GSM pre-snapshotΣ1 = ImmEffect(Σ, e, t)
w.r.t. to data and status attributes. Similarly it can be shown for the case of
service call return. The only difference would be a condition of an atomic stage
to be activated in order to enable service call.

Now let us get down to proving correspondence between PAC rules and their
translations.

Consider, for instance, a PAC-1 rule (πk, αk, γk) corresponding to a certain
micro-step in the incremental foundation. We have to prove that a corresponding
DCDS CA-rule is eligible to apply the effect γ if and only if the PAC-1 rule is
eligible to apply the effect γ and that the effect of firing this rule will result in
the coinciding pre-snapshot w.r.t. to data and status attributes.

The PAC-1 rule is eligible to apply the effect γ if and only if each of the
following holds:

– Σ � πk, i.e. the prerequisite is met.

– Σj � αk, for αk = [ on ξ(x) if φ(x)], i.e. the antecedent is satisfied.

– the ordering implied by PDG(Γ ) is respected, i.e. for each pair (r, r′) of
ground rules with abstract actions �R.s and �′R′.s′, respectively, if �R.s <
�′R′.s′, then the rule r must be considered for firing before the rule r′ is
considered for firing.

Now let us consider the translation of the PAC-1 rule to DCDS CA-rule
and show that the conditions for applying the effect γ coincide with those listed
above. The corresponding CA-rule looks like the following:



Rexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→
αkexec(idR, a

′, x) : {
(1) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) Ratt(idR, a, s,m)[Sj/true]

(2) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) R
Sj

chg(idR, true)

(3) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) ROout(idR, b1, ..., bk)

(4) Rexec(idR, x) ∧ xk = 0 Rexec(idR, x)[xk/1]

(5) [CopyMessagePools]

(6) [CopyRest] },
where exec(k) =

∧

k

xk such that rk <PDG ra

Rξ(idR, a′) = RM (idR, a′) if the guard contains incoming message event

or Rattchg(idR, statusnew)) if the guard contains internal event.

The condition part of this CA-rule obtains the current state of the execution
plan for this event and insures that this CA-rule has not yet been taken into
consideration (xk = 0) and that all the preceding CA-rules have been taking
into consideration (exec(k)).

Assume thatΣ 2 πk. Then, since each micro-step is preceded by the ImmEffect,
then the CA-rule implementing the immediate effect of the event has already
been fired. Since it has been fired then for each i either of the effects has been
applied:

RFexec(idR, x1, ..., xq) ∧ πi(idR) RFexec(idR, x1, ..., xq)[xi/0]

RFexec(idR, x1, ..., xq) ∧ ¬πi(idR) RFexec(idR, x1, ..., xq)[xi/1]

Since Σ 2 πk, then it is the second effect that has been applied, so xk = 1, which
prevents our CA-rule to fire, since the condition part is not met.

Now let us assume that the prerequisite holds, but the ordering implied by
PDG(Γ ) is not yet respected, i.e. there exists a rule r′, such that �′R′.s′ <
+R.activeS and that it has not yet been considered. Then the executability flag
x′ will be equal to 0, which will prevent rule from firing, since the condition part
of the CA-rule contains a check x′ = 1.

Now let us assume that Σ � πk, the ordering is respected, but Σj 2 αk, so
either on ξ(x) hasn’t happened or Σ 2 φk. Then the CA-rule will be eligible to
fire, however, the effects (1-3) will not be applied, since the query for instantiating
them will be empty:

– in case Σj 2 φk – it is obvious.

– in case on ξ(x) hasn’t happened, this means that the corresponding record
hasn’t been put into the Rξ, therefore Rξ will be empty.



. Then the only effect that will possible take place are (3) - (6), which do not
deal with any data or status attributes and, however, mark this PAC-rule as
considered, so that rules dependent on this one could proceed.

Not let us assume that Σ � πk, Σj � αk and the ordering is respected. Then
the effect will be applied and will result in toggling the status attribute R.activeS
to true. None of the remaining effects deal with data or status attribute, so the
resulting DCDS pre-snapshot will coincide to that of GSM micro-step w.r.t. to
data and status attributes.

The proof for other PAC rules can be formulated similarly to PAC-1.
The proof for CA-rule of sending a set of outgoing one-way messages once all

the PAC rules have been taken into consideration, can be formulated similarly
to ImmEffect rule.

�

We now have to prove the second and the third statement of the proof plan.

Lemma 2. Given an artifact instance AR for each possible GSM B-step (i.e. a
sequence of micro-steps preceded by ImmEff and followed by the step of sending
outgoing messages to the environment) there exists a corresponding execution in
the DCDS transition system.

Proof. In order to prove this statement we have to prove that the mechanism
used by the DCDS translation to restrict the possible sequences of CA-rules
results in the same order imposed by the PDG graph of the GSM model.

Let us assume we have a sequence of PAC-rules ΓPAC = {ri = (πi, αi, γi)},
preceded by the ImmEffect micro-step, which respect the order imposed by the
PDG graph constructed for the given GSM model. We now have to prove that
for the set of corresponding CA-rules {tr(ri)} the following holds:

∀rm, rn ∈ ΓPAC if rm <PDG rn then for any path in DCDS transition system,

tr(rm) is considered for firing before tr(rn) is considered for firing.

Assume rn = (π, α,�R.s) and rm = (π′, α′,�′R′.s′). Then �R.s < �′R′.s′. This
means that, by construction of PDG, α′ contains �R.s as a triggering event (or
contains R.s in its condition).

Let us now consider corresponding DCDS CA-rules:

tr(rm) = Q 7→ act

tr(rn) = Q′ 7→ act′

By definition of DCDS translation, exec(n) ∈ Q′ where:

for each PAC rule rk = (πk, αk, γk) the expression exec(k) for the correspond-
ing CA-rule tr(rk) is defined as follows:

exec(k) =
∧

j

xj such that rj <PDG rk (i.e. γj ∈ αk),
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exec(r) =
V

i xi such that i ranges over the indexes corresponding to those rules
that precede r.

Once all xi flags are switched to 1, then the B-step is about to finish: a
specific CA-rule is enabled to send the outgoing events to the environment, and
the artifact instance blocked flag is released.

Rexec(idR, x) ^ xk = 0 ^ exec(k) ^ RBlocked(idR, true) 7! (1)

ak
exec(idR, a0, x) : { (2)

Ratt(idR, a, s, m) ^ R
Sj

chg(idR, true) {Ratt(idR, a, s, m)[mj/false]} (3)

Ratt(idR, a, s, m) ^ R
Sj

chg(idR, true) {R
mj

chg(idR, false)} (4)

RM
exec(idR, x) ^ xk = 0 {RM

exec(idR, x)[xk/1]} (5)

[CopyMessagePools] (6)

[CopyRest] } (7)

Fig. 4: CA-rule encoding a milestone invalidation upon stage activation

Example 2. An example of a translation of a GSM PAC-rule (indexed by k) is presented
in Figure 4. For simplicity, multiple parameters are compacted using an “array” notation
(e.g., x1, . . . , xn is denoted by x). In particular: (1) represents a condition part of a
CA-rule, ensuring the “toggle-once” principle (xk = 0), the compliant firing order
(exec(k)) and the “one-message-at-a-time” principle (RBlocked(idR, true)); (2) describes
the action signature; (3) is an e↵ect encoding the invalidation a milestone if the stage has
just been activated; (4) propagates an internal event denoting the milestone invalidation, What does it

mean “just been
activated”?

What does it
mean “just been
activated”?

if needed; (5) flags the encoded micro-step corresponding to PAC rule k as processed;
(6) and (7) are macros used to transport the una↵ected data into the next snapshot.

Given a GSM model G with initial snapshot s0, we denote by ⌥G its B-step
transition system, i.e., the infinite-state transition system obtained by iteratively
applying the incremental GSM semantics starting from s0 and nondeterministi-
cally considering each possible incoming event. The states of ⌥G corresponds to
stable snapshots of G, and each transition corresponds to a B-step. We abstract
away from the single micro-steps constituting a B-step, because they represent
temporary intermediate states that are not interesting for verification. Similarly,
given the DCDS S obtained from the translation of G, we denote by ⌥S the
transition system obtained by starting from s0, and iteratively applying nondeter-
ministically the CA-rules of the process, and the corresponding actions, in all the
possible ways. As for states, we only consider those database instances where all
artifact instances are not blocked; these correspond in fact to stable snapshots of
G. We also project away from those states all the auxiliary relations introduced by
the translation mechanism. We then connect two such states provided that there
is a sequence of (intermediate) states that lead from the first to the second one,
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Fig. 3. Construction of the B-step transition system ΥG and unblocked-state transition
system ΥS for a GSM model G with initial snapshot s0 and the corresponding DCDS
S

where xj is a boolean flag that shows whether the CA-rule tr(rj) has been taken
into consideration. By construction of the DCDS translation, the boolean flag
xj is only affected in the CA-rule tr(rj) and in the first micro-step incorporating
the immediate effect. The ImmEff micro-step checks the prerequisite of a PAC
rule in order to set the value of xj . Assume it is set to 1, which means that
prerequisite is not satisfied and therefore rj cannot influence αk, so rk can fire,
which is totally valid. Assume now it is set to 0, which means that rj is applicable
and should be taken into consideration. Then, the only place in the translation
it may be affected is the tr(rj) and it will be, in fact, changed to 1, whenever
this CA-rule will be nondeterministically chosen to fire. Till then it will be 0,
which will prevent tr(rk) from firing.

Therefore tr(rn) will not be taken into consideration unless tr(rm) has been
taken into consideration.

�

Lemma 3. Given an artifact instance AR, its GSM model and a corresponding
DCDS translation, for each possible execution in DCDS starting with Immediate
Effect rule, there exists a corresponding B-step in GSM model, which results in
the same next pre-snapshot Σj+1 w.r.t. data and status attributes.

Proof. The proof is done by construction of CA-rules, see Section 3.2. �

Given a GSM model G with initial snapshot S0, we denote by ΥG its B-step
transition system, i.e., the infinite-state transition system obtained by iteratively
applying the incremental GSM semantics starting from S0 and nondeterministi-
cally considering each possible incoming event. The states of ΥG correspond to
stable snapshots of G, and each transition corresponds to a B-step. We abstract
away from the single micro-steps constituting a B-step, because they represent
temporary intermediate states that are not interesting for verification purposes.
Similarly, given the DCDS S obtained from the translation of G, we denote
by ΥS its unblocked-state transition system, obtained by starting from S0, and
iteratively applying nondeterministically the CA-rules of the process, and the



corresponding actions, in all the possible ways. As for states, we only consider
those database instances where all artifact instances are not blocked; these corre-
spond in fact to stable snapshots of G. We then connect two such states provided
that there is a sequence of (intermediate) states that lead from the first to the
second one, and for which at least one artifact instance is blocked; these sequence
corresponds in fact to a series of intermediate-steps evolving the system from a
stable state to another stable state. Finally, we project away all the auxiliary
relations introduced by the translation mechanism, obtaining a filtered version
of ΥS , which we denote as ΥS |G . The intuition about the construction of these
two transition systems is given in Figure 3. Notice that the intermediate micro-
steps in the two transition systems can be safely abstracted away because: (i)
thanks to the toggle-once principle, they do not contain any “internal” cycle; (ii)
respecting the firing order imposed by G, they all lead to reach the same next
stable/unblocked state.

We can then establish the one-to-one correspondence between these two tran-
sition systems by applying subsequently results obtained from Lemmas 1 – 3 to
prove the following theorem:

Theorem 1 (Soundness and completeness).
Given a GSM model G and its translation into a corresponding DCDS S, the
corresponding B-step transition system ΥG and filtered unblocked-state transition
system ΥS |G are equivalent, i.e., ΥG ≡ ΥS |G.

6 State-bounded GSM models

The sound and complete translation of a GSM model into a corresponding
DCDS provides the basis for applying the decidability and complexity results dis-
cussed in [9] for a purely technical DCDS framework, to more business-intuitive
GSM approach. In particular, we make use of a semantic condition posed on
the infinite-state transition system representing the execution semantics of the
DCDS under study – state-boundedness – that guarantees decidability for a rich
variant of first-order µ-calculus with some limitation on quantification over time
[9].

We now take advantage of the key decidability result obtained for DCDSs and
study verifiability of state-bounded GSM models. Observe that state-boundedness
is not a too restrictive condition. It requires each state of the transition system to
contain a bounded number of tuples. However, this does not mean that the sys-
tem in general is restricted to encounter only a limited amount of data: infinitely
many values may be distributed across the states (i.e. along an execution), pro-
vided that they do not accumulate in the same state. Furthermore, infinitely
many executions are supported, reflecting that whenever an external event up-
dates a slot of the information system maintained by a GSM artifact, infinitely
many successor states in principle exist, each one corresponding to a specific new
value for that slot.

Lemma 4. Given a GSM model G and its DCDS translation S, G is state-
bounded if and only if S is state-bounded.



Proof. Recall that S contains some auxiliary relations, used to restrict the ap-
plicability of CA-rules in order to enforce the execution assumptions of GSM:

– the eligibility tracking table Rexec,
– the artifact instance blocking flags Rblock,
– the internal message pools Rmsgkdata , R

srvp
data, R

msgq
out , and

– the tables of status changes Rmi

chg, R
sj
chg.

We discuss the two implications separately. (⇐) This is directly obtained by
observing that, if ΥS is state-bounded, then also ΥS |G is state-bounded. From
Theorem 1, we know that ΥS |G ≡ ΥG , and therefore ΥG is state-bounded as well.
(⇒) We have to show that state boundedness of G implies that also all auxiliary
relations present in ΥS are bounded. We discuss each auxiliary relation sepa-
rately. The artifact blocking relation Rblock keeps a boolean flag for each artifact
instance, so its cardinality depends on the number of instances in the model.
Since the model is state-bounded, the number of artifact instances is bounded
and so is Rblock. The eligibility tracking table Rexec stores for each artifact in-
stance a boolean vector describing the applicability of a certain PAC rule. Since
the number of instances is bounded and so is the set of PAC rules, then the re-
lation Rexec is also bounded. Similarly, one can show the boundedness of Rmi

chg,

R
sj
chg due to the fact that the number of stages and milestones is fixed a-priori.

Let us now analyze internal message pools. By construction, S may contain at
most one tuple in Rmsgkdata and R

srvp
data for each artifact instance. This is enforced

by the blocking mechanism Rblock, which blocks the artifact instance at the be-
ginning of a B-step and prevents the instance from injecting further events in
internal pools. The outgoing message pool R

msgq
out may contain as much tuples

per artifact instance as the amount of atomic stages in the model, which is still
bounded. However, neither incoming nor outgoing messages are accumulated in
the internal pool along the B-steps execution, since the final micro-step of the
B-step is designed not to propagate any of the internal message pools to the
next snapshot. Therefore, ΥS is state-bounded. ut

From the combination of Theorems ?? and 1 and Lemma 4, we directly obtain:

Theorem 2. Verification of µLP properties over state-bounded GSM models is
decidable, and can be reduced to finite-state model checking of propositional µ-
calculus.

Obviously, in order to guarantee verifiability of a given GSM model, we need
to understand whether it is state-bounded or not. However, state-boundedness
is a “semantic” condition, which is undecidable to check [9]. We mitigate this
problem by isolating a class of GSM models that is guaranteed to be state-
bounded. We show however that even very simple GSM models are not state-
bounded, and thus we provide some modeling strategies to make any GSM model
state-bounded.

Sufficient syntactic conditions have been studied in [9] to check whether the
DCDS under study is state-bounded and, in turn, can be verified. However,
when dealing with GSM these syntactic conditions become irrelevant, because



the resulting DCDS translations belong to a particular class of systems, for which
studied syntactic conditions do not hold even in a trivial case. In particular,
the way how immediate effect of an event is encoded, immediately makes the
resulting DCDS violate the GR-acyclicity condition. Therefore, we have to find
an alternative syntactic condition, working directly at the GSM level, in order
to not only guarantee the verifiability of the model, but also provide feedback
and explanation to the user. The following section defines such a condition.

6.1 GSM Models without Artifact Creation.

We investigate the case of GSM models that do not contain any create-artifact-
instance tasks. Without loss of generality, we assimilate the creation of nested
datatypes to the creation of new artifacts. From the formal point of view, we
can in fact consider each nested datatype as a simple artifact with an empty
lifecycle, and its own information model including a connection to its parent
artifact.

Corollary 1. Verification of µLP properties over GSM models without create-
artifact-instance tasks is decidable and can be reduced to finite-state model check-
ing of propositional µ-calculus.

Proof. Let G be a GSM model without create-artifact-instance tasks. At each
stable snapshot Σk, G can either process an event representing an incoming one-
way message, or the termination of a task. We claim that the only source of state-
unboundedness can be caused by service calls return related to the termination
of create-artifact-instance tasks. In fact, one-way incoming messages, as well as
other service call returns, do not increase the size of the data stored in the GSM
information model, because the payload of such messages just substitutes the
values of the corresponding data attributes, according to the signature of the
message. Similarly, by an inspection of the proof of Lemma 4, we know that
across the micro-steps of a B-step, status attributes are modified but their size
does not change. Furthermore, a bounded number of outgoing events could be
accumulated in the message pools, but this information is then flushed at the
end of the B-step, thus bringing the size of the overall information model back to
the same size present at the beginning of the B-step. Therefore, without create-
artifact-instance tasks, the size of the information model in each stable state is
constant, and corresponds to the size of the initial information model. We can
then apply Theorem 2 to get the result. ut

6.2 Arbitrary GSM Models.

The types of models studied in paragraph above are quite restrictive, because
they forbid the possibility of extending the number of artifacts during the exe-
cution of the system. On the other hand, as soon as this is allowed, even very
simple GSM models, as the one shown in Fig. 4, may become state unbounded. In
that example, the source of state unboundedness lies in the stage containing the
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Fig. 4. Unbounded execution of the GSM model

“add item” task, which could be triggered an unbounded number of times due
to continuous itemRequest incoming events. This, in turn, is caused by the fact
that the modeler left the GSM model underspecified, without providing any hint
about the maximum number of items that can be included in an order. To over-
come this issue, we require the modeler to supply such information (stating, e.g.,
that each order is associated to at most 10 items). Technically, the GSM model
under study has to be parameterized by an arbitrary but finite number Nmax,
which denotes the maximum number of artifact instances that can coexist in the
same execution state. We call this kind of GSM model instance bounded. Two
different policies may be adopted to provide Nmax: shared vs fixed distribution.
In the shared scenario, one global maximum value is fixed for the total number
of artifact instances, regardless the artifact type. While this policy incorporates
a flexible assignment of the available “slots”, it does not guarantee any form of
fairness about their allocation: they could all be occupied by instances of the
same artifact type, blocking the possibility of creating instances of other artifact
types. This problem can be overcome with the fixed distribution scenario, which
requires the modeler to allocate available “slots” for each artifact type of the
model, i.e. to specify a maximum number NAi for each artifact type Ai, then
having Nmax =

∑
iNAi . We discuss the execution of a GSM model with fixed

distribution strategy.

In order to incorporate the artifact bounds into the execution semantics, we
proceed as follows. First, we pre-populate the initial snapshot of the considered
GSM instance with Nmax blank artifact instances (respecting the relative pro-
portion given by the local maximum numbers for each artifact type). We refer
to one such blank artifact instance as artifact container. Along the system exe-
cution, each container may be: (i) filled with concrete data carried by an actual
artifact instance of the corresponding type, or (i) flushed to the initial, blank
state.

To this end, each artifact container is equipped with an auxiliary flag fri,
which reflects its current state: fri is false when the container stores a concrete
artifact instance, true otherwise. Then, the internal semantics of create-artifact-
instance is changed so as to check the availability of a blank artifact container.
In particular, when the corresponding service call is to be invoked with the
new artifact instance data, the calling artifact instance selects the next available
blank artifact container, sets its flag fri to false, and fills it with the payload of
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Fig. 5. CA-rule encoding a create-artifact-instance service call

the service call. If all containers are occupied, the calling artifact instance waits
until some container is released.

Symmetrically to artifact creation, the deletion procedure for an artifact
instance is managed by turning the corresponding container flag fri to true. An
example of a CA-rule, implementing the presented approach to artifact instance
creation in DCDSs is presented in Figure 5, where: (1) represents a condition
part of a CA-rule, ensuring the existence of a free container idQ (fr′ = true); (2)
describes the action signature; (3) is an effect filling the container with a certain
data (ν(a)) and marking it as occupied ([fr′/false]); (4) propagates an event
denoting the artifact instance creation; (5) blocks the caller artifact instance to
process such event; (6) are macros used respectively to set up eligibility tracking
and to transport the unaffected data into the next snapshot.

We observe that, following this container-based realization strategy, the in-
formation model of an instance-bounded GSM model has a fixed size, which
polinomially depends on the total maximum number Nmax. The new implemen-
tation of create-artifact-instance does not really change the size of the informa-
tion model, but just suitably changes its content. Therefore, Corollary 1 directly
applies to instance-bounded GSM models, guaranteeing decidability of their ver-
ification. Finally, notice that infinitely many different artifact instances can be
created and manipulated, provided that they do not accumulate in the same
state (exceeding Nmax).
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